L Error Estimates and Superconvergence for Covolume or Finite Volume Element Methods

نویسندگان

  • So-Hsiang Chou
  • Do Y. Kwak
  • Qian Li
چکیده

We consider convergence of the covolume or finite volume element solution to linear elliptic and parabolic problems. Error estimates and superconvergence results in the L norm, 2 p , are derived. We also show second-order convergence in the L norm between the covolume and the corresponding finite element solutions and between their gradients. The main tools used in this article are an extension of the “supercloseness” results in Chou and Li [Math Comp 69(229) (2000), 103–120] to the L based spaces, duality arguments, and the discrete Green’s function method. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 463–486, 2003

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Posteriori Error Estimation and Mesh Adaptivity for Finite Volume and Finite Element Methods

Error representation formulas and a posteriori error estimates for numerical solutions of hyperbolic conservation laws are considered with specialized variants given for the Godunov finite volume and discontinuous Galerkin finite element methods. The error representation formulas utilize the solution of a dual problem to capture the nonlocal error behavior present in hyperbolic problems. The er...

متن کامل

Error Estimates in L, H and L∞ in Covolume Methods for Elliptic and Parabolic Problems: a Unified Approach

In this paper we consider covolume or finite volume element methods for variable coefficient elliptic and parabolic problems on convex smooth domains in the plane. We introduce a general approach for connecting these methods with finite element method analysis. This unified approach is used to prove known convergence results in the H1, L2 norms and new results in the max-norm. For the elliptic ...

متن کامل

Superconvergence Analysis of Finite Element Methods for Optimal Control Problems of the Stationary Bénard Type

In this paper, we consider the finite element approximation of the distributed optimal control problems of the stationary Bénard type under the pointwise control constraint. The states and the co-states are approximated by polynomial functions of lowest-order mixed finite element space or piecewise linear functions and the control is approximated by piecewise constant functions. We give the sup...

متن کامل

A Symmetric Finite Volume Element Scheme on Quadrilateral Grids and Superconvergence

A symmetric finite volume element scheme on quadrilateral grids is established for a class of elliptic problems. The asymptotic error expansion of finite volume element approximation is obtained under rectangle grids, which in turn yields the error estimates and superconvergence of the averaged derivatives. Numerical examples confirm our theoretical analysis.

متن کامل

Sharp L-error Estimates and Superconvergence of Mixed Finite Element Methods for Non-fickian Flows in Porous Media∗

Abstract. A sharper L-error estimate is obtained for the non-Fickian flow of fluid in porous media by means of a mixed Ritz–Volterra projection instead of the mixed Ritz projection used in [R. E. Ewing, Y. Lin, and J. Wang, Acta Math. Univ. Comenian. (N.S.), 70 (2001), pp. 75–84]. Moreover, local L superconvergence for the velocity along the Gauss lines and for the pressure at the Gauss points ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003